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Abstract. A new method using a small fixed number (much less than the total number of 
electrons in the system) of orbitals to calculate the electronic structure of an arbitnrily large 
system is presented. For crystals, this method reduces to a conventional Brillonin zone k-point 
integration method with the total number of states of all the k-points equal to the number of 
orbitals used in this method. If one uses a fixed number of orbitals the total computational time 
is linear in the size of the system. The method is applied Lo huo test systems using a dane wave 
basis and the results are compared with conventional methods. 

1. Introduction 

Density functional theory [l] is a widely used tool for studying electronic properties for 
both solid state systems and large molecules [2,3]. In the local density approximation 
[4], all energies can be expressed as explicit functions of the total electron density, with 
the exception of the kinetic energy. In the KohnSham scheme [4], the kinetic energy is 
defined as the kinetic energy of N single-electron orbitals for a 2N electron system (we 
discuss unpolarized systems and ignore the spin-orbit coupling). Thus we have 

Eror = + &[PI (1) 
and 

/ @ i ( ~ ) @ ? ( ~ ) d ~ ~ = & , j  (4) 

where E&] is the potential energy, which includes the electron-ion energy, Hartree energy 
and exchange correlation energy. They all can be written explicitly as functions of p ( r ) ,  
Using the local density approximation C4.51. Ek is the noninteracting single-particle kinetic 
energy. Using variational principles to solve the minimum of Eror, one gets the following 
Kohn-Sham equations: 

-4vzqio + V(T)@i(T) = Ei@i(T) (5) 

3 Present address: NREL, Cole Boulevard, 1611 Golden, CO 80401. USA. 
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where V ( T )  = SE,[p] /Gp is the effective total potential which can be expressed as an 
explicit functional of p ( r )  and ci is the eigenvalue of @j(r). There are several numerical 
ways to solve KohnSham equations (5) [S-71. One widely used way of solving them 
for large systems is to minimize E,,, iteratively by changing @ j ( ~ )  while keeping the 
orthonormal conditions equation (4) satisfied for every iteration step [6,7]. However, the 
computation to impose the orthonormal constraint is proportional to N’, because there are 
fN(Nf1)pairsof @j(~)@j(~), andtheeffortofcarryingouttheintegrationS d3r foreach 
pair is proportional to N. As a result, for N larger than a few hundred, the orthonormal 
constraint dominates the whole computation, and the computation time scales as N3. 

There are several approaches to making the computational tine linear in the size of the 
system [8-201. One direct way is to make the kinetic energy Ek an explicit functional of 
the charge density p ( r ) ,  so that no wavefunction @i is needed in the calculation [lo]. One 
can also apply the inverse iteration method (which was originally developed for the tight- 
binding calculations) to a real-space numerical grid basis, and thus achieve an ab initio and 
linear-in-N method [Ill. Other methods include the Green’s function approach [ZO] and 
the spectrum approach 1191. One widely used approach, however, is to use the Wannier-like 
localized orbitals [12-14,17,18] or the related localized density matrix [15,16]. Based on 
the fact that the Wannier functions are exponentially localized for a system with a band 
gap [21], the calculation can be linearized by describing a Wannier-like orbital in its finite 
localized region. Various modifications exist in using this approach, which have generated 
different ‘localized orbital’ methods [12,18]. This localization idea can be restated in the 
following way: The ‘local electronic smcture’ around one point T (e.g.. the kinetic energy 
density, the electronic charge density p ( ~ ) )  and the density matrix p‘(r‘, T), depend only 
on the total potential V around that point; the points that are far away affect only the Fermi 
energy. A direct implementation of this idea is to cut the large system into many small 
parts, and obtain solutions by solving these small parts independently, then ‘patching’ them 
together using a common Fermi energy. This approach was suggested by Yang [9]. One 
disadvantage of this real space ‘divide and conquer’ scheme is that not all the points in 
real space are treated equally. There is no ‘divide and conquer’ in the localized orbital 
methods, but still not all the points in real space are treated equally in their formalism. This 
is represented by the positioning of the localized orbitals which in some sense is artificial. 
Only when a sufficiently large region is used to describe each localized orbital, will the 
orbital positioning not affect the final results. (Throughout this paper, we will use the 
‘divide and conquer’ picture to facilitate our discussion. Sometimes, we use this phrase to 
mean that the treatment of all the real space points is not equal. It is also in this sense that 
we sometimes refer to the localized orbital methods as ‘divide and conquer’ methods.) 

In this work, we present an alternative to the above real space ‘divide and conquer’ 
methods to achieve the linear-in-Nscaling. Instead of ‘divide and conquer’ in real space, 
the current method is more like a ‘divide and conquer’ in k-space (borrowing the terminology 
from periodic systems). More specifically, instead of using N localized orbitals, we use 
n(n << N) spatially extensive orbitals (to be called reduced orbitals). There is no artificial 
dividing (or positioning) in real space. Like the above methods, the current method scales 
linearly with N. Because the use of the order-N methodology in electronic structure 
calculations is still in its development stage, exploring and analysing new methods is useful. 
Unlike the localized orbital methods, whose implementation for ab initio calculations (i.e. 
not tight-binding-like calculations) needs special care as regards their basis functions, the 
current method is explicitly designed for and implemented by plane-wave bases. The current 
work is based on the previous work of [8] with some new results. 

Lin-Wang Wmg and M P Teter 
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2. Theory: the reduced orbital formalism 

2.1. The basic formalism 

Although our final goal is to abandon the ‘divide and conquer’ strategy in real space, it 
will help us to introduce our method conceptually by starting with the real-space ‘divide 
and conquer’ method. The main purpose here is to make a connection between the 
real-space ‘divide and conquer’ scheme and the current scheme. This connection will 
help to determine the relationship between different quantities (e.g., the n and Q in the 
following). Let us study a large three-dimensional periodic system. We will cut it in x ,  y ,  e 
directions to get m,, m y ,  m, parts, respectively. Thus, the large system has been divided 
into m = m, x my x mz small rectangular systems. For simplicity, let us first assume 
that the large system is roughly ‘uniform’ in the size scale of the small systems. In other 
words, all the small systems can have the same size and each of them contains 2n = 2 N / m  
electrons, where 2N is the number of electrons in the large system. Now, using the ‘divide 
and conquer’ strategy, we solve the Schrodinger equation (5) for each small system. Let M 
be the index of the small system. We then denote the wavefunctions of the small systems as 
@ ~ , j ( r ) ,  where i runs from 1 to n. The orthonormal condition of equation (4) has changed 
to 

/ @ M . i ( T ) @ L , j ( r ) W ( T  - R M ) ~ ’ T  = 6i.j (6) 

where RM is at the centre of small system M ,  and W ( T -  RM) is a weight function localized 
in the region of the small system M and will be discussed in detail later. The integration 
1 d3r is over the whole space. (For a strict real-space ‘divide and conquer’ method, w is 
1 inside the small rectangular and zero elsewhere. Then d3r is effectively defined inside 
a small system.) 

Now, to change the ‘divide and conquer’ method to a reduced orbital method, we will 
‘patch’ (or say connect) the ith small wavefunctions @ M , ~ ( T )  of all small systems ( M I  
into an extensive orbital @ i ( ~ ) .  More specifically, we try to construct a spatially extensive 
wavefunction &(T)  which equals &Jr) in the region of small system M (here, i still runs 
from 1 to n) .  Then the orthonormal condition of equation (6) becomes 

0) 1 s m 
@ ~ ( T ) @ ~ ( T ) w ( T  - R ~ ) d ’ r  = -6j.j 

for all M E [ 1,. . . , m].  The factor l / m  is a result of normalization of &(rY over the 
whole space of the large system. The existence of position RM in equation (7) indicates 
the remnant of the ‘divide and conquer’ strategy. One question is whether there is a weight 
function w,  such that the orthonormal condition equation (7) can be satisfied for an arbitrary 
position R, without introducing excessive constraints on @;(r). Such weight functions w 

 do exist, the simplest one is 

where domain Q is defined as 

and 

ix E -(mx - l), . . . , (m, - 1 )  
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iy E -(my - 1). . . . , (my - 1) 
ir E -(mz - I), . . . , (mz - 1) 

where L,, L,. L, are the x ,  y .  e length of the large system. Unlike conventional weight 
functions which are positive everywhere, the w ( r )  defined by equation (8) has some small 
negative values in some regions. (However, we can use other weight functions, e.g., 
w’(r) = ( ( l / m )  exp(ilc . r))? for odd m,, my,  mL, which is positive everywhere, 
and the subsequent equations (10)-(12) will be the same.) Using the w(r )  of equation (8), 
the orthonormal conditions of equation (7) for all small box M is equivalent to the following 
orthonormal conditions: 

1 h ( r ) + 3 9 ~ e ( r ) d 3 r  = & , j b , o  (10) 

for all k E s2 and 

W k ( T )  = eik+ (11) 
(This we(r) should not be confused with W ( T )  of equation (8)). On the other hand, if 4i(r) 
satisfy equations (10) and (11) for all ]E E Q, then they will satisfy 

(12) 

for arbitrary R. Now, there is no remnant of the real-space ‘divide and conquer’ strategy. 
The equations (10) and (12) treat all red-space points R equally. 

After the reduced orbital @{(T) and their orthonormal conditions equation (10) are 
established, we can write down the total energy expression using &(T): 

1 s m 
& ( V ) ~ ~ ; ( T ) W ( T  --R)d3r = -8j. j  

Erof = - m j ~ ~ ~ ( r ) V z ~ i ( r ) d 3 r + E , l p l  (13) 

and 

The prefactor m in equations(l3), (14) indicates that each reduced orbital @i(r) has been 
‘occupied’ with 2m electrons. 

In the above, the equations (10)411), (13x14) are introduced from the real-space 
‘divide and conquer’ strategy. Another way to introduce our method is to make equations 
(lO)-(ll), (13)-(14) the basic ansatz of the current scheme. The q$(r) is defined as the 
variational solution of equation (13) for the minimum Eror under the orthogonalization 
constraints of equation (10). Equations (13x14) define an energy functional Etot[4i(r)] 
under the constraints of equation (10). The weight function w does not explicitly appear 
in equations (13t(14), but rather it implicitly controls &(r) through the orthogonalization 
constraints of equation (12) (or equation (IO)). This fact is not related to our definition of 
w (equation (8) ) ;  rather, it can be thought as a basic assumption of the ansatz. 

2.2. Modifications 

There is one problem in the above equations (10)412) and (14). Summing over i = j = 
1,. . . , n of equations (lo), (12), and using equation (14), we have 
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and 

P ( T ) W ( T  - R) d3r = 2n. (16) s 
This is a result of the assumption we made at the begining of section 2.1. that the 

large system is roughly ‘uniform’ in the size scale of the small system, so that each equally 
volumed small system contains 2n electrons (equation (16)). (Here and in the following, we 
will keep using the phrase of ‘small systems’ for illustration purposes, although we do not 
have a ‘divide and conquer’ any more. The ‘small system’ can be understood as an alias 
of W ( T  - R). Thus there is one ‘ s d  system’ defined for each E.) But this assumption 
(and equations (15t(16)) is usually not true, especially for systems with different material 
domains (e.g., with vacuum). There are two ways to correct this problem. In the first 
way (to be called the fixed-occ method; ‘occ’ stands for occupation), the volume of each 
small system will be adjusted so that it will contain 2n electrons. This is equivalent to 
modifying w ~ ( T )  (hence W ( T )  = I / m  xksn w~(T)) according to the charge density p( r ) .  
In the second way (to be called the fixed-vol method; ‘vol’ stands for volume), the volume 
of each small system will be fixed (thus W ( T )  will be fixed), but the number of electrons 
within each small systems will be changed. We will introduce these two methods in the 
following treatment. 

In the fixed-occ method, we will redefine W ~ ( T )  so that equations (15) and (16) can be 
satisfied. One way to do this is to make a transformation T + P ( T )  and let the Jacobian 
of this transformation satisfy 

where PO is the average density over the whole system. Then w ~ ( T )  is redefined as 

(18) w ~ ( T )  = e  ik.fiL(r), 

After this, it is e%y to show that equation (15) (hence, also equation (16)) is satisfied. 

is described in [8]. Another simightfonvard way is to use the following iterations [8]: 
To obtain p ( ~ )  for a given p ( r )  is easy. One method, which uses a spring-mesh model, 

/ 4 + 1 ( 4  = P l ( 4  + APl(cL,(T))~ (19) 
and 

where 1 is the iteration index, k is  the^ reciprocal vector of the large system and pl(k), 
Ap,(k) are defined as 

(21) 

where 

PI(P1) = Pr-l(Pl)/J(Pr-l + PJ ’ (23) 
The iteration starts w i t h i ,  = T and p l ( p l )  = y ( ~ ) .  The iteration stops when pl(k) = 0 
for k # 0. Because, for each iteration, J ( P ( - ~  -+ p l )  equals pl-l(p,) in the first order of 
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pi-l(k # 0). the iteration converges very fast (about 2 to 3 iterations are enough to get a 
satisfactory p(r)) .  Thus calculating p(r )  from a given p ( r )  is not a problem in practice. 

In the fixed-vol method, instead of changing I I J ~ ( T ) ,  we will change the occupation 
number in each small system. Assume that we have obtained solution for n orbitals &(T)  

with n slightly larger than N / m  using orthonormal conditions of equations (IO) and (11). 
Then instead of using equation (14) to get the charge density p ( r ) ,  we will use a new 
method to obtain it. We first diagonalize the following matrix defined as a function of 
position R 

fin-Wang Wang and M P Teter 

H i , j ( R )  = - R ) $ [ @ ( P ) ( g @ j ( T ) )  + 4j(~)(fi@i(~))*l d3T (24) s 
where W(T - R) is defined in equation (8) and 6 = - iVz+ V ( T ) .  Let E l @ )  and ur(i, R) 
be the eigenvalue and eigenvector of H i , j ( R )  respectively. Then we can define 

i=l 
as the Ith local eigenfunction at R. Then we can calculate the charge density as 

where F ( x )  = l/(er + 1) is the Fermi occupation function, and 1/,9 is a fictitious 
temperature. ER stands for a summation over a set of points (which includes many more 
points than m). f (T - R) is a partition function, which satisfies 

E/ is a Fermi energy which is determined by requiring the total charge to be 2 N .  Finally, 
the band structure energy of the system (defined as the sum of the occupied eigenvalues of 
equation (5)) is 

The remaining part of the energy can be calculated as a function of p ( r ) .  One 
disadvantage of this method is that we reintroduced the real-space positioning of R, 
which is reminiscent of the real-space 'divide and conquer' method. However, since the 
diagonalization of H i , j ( R )  is fast, we can calculate many R points (far more than m).  and 
we found in practice that the result is insensitive to the positions of R as long as there are 
more R points than m and f (T - R) is more localized than W(T - R). We also found that 
the results are insensitive to ,9 as long as it is sufficiently large. 

2.3. The calculation of the reduced orbitals 

In the following, we will discuss the numerical methods to calculate $ i ( ~ ) .  The procedures 
for the fixed-occ and fixed-vol methods are the same, except as regards the definition 
of w b ( r ) .  Thus they will be treated in the same formalism. The goal is to solve for 
4i(r) by variationally minimizing E,,, of equation (13) while satisfying the orthonormal 
condition of equation (IO) (where w ~ ( T )  is defined by equations (18) and (11) for the 
fixed-occ and fixed-vol methods respectively). In the fixed-occ method, the charge density 
p ( r )  should be calculated in each iteration step using equation (14), and p ( r )  will enter 
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the orthogonalization constraint equations of @;(T). In the fixed-vol method, the charge 
density P(T) does not enter the orthogonalization constaint equations of q $ ( ~ ) ,  and it 
will only be calculated (using equation (26)) after all the d i ( ~ )  have converged. To 
impose the orthogonalization constraint from equation (lo), we  add^ a Lagrangian term 
from equation (10) to equation (13); then taking a derivative of equation (13) with respect 
to @ j ( ~ ) ,  we get the following equation 

where D(i ,  j ,  k) is a Lagrangian multiplier, and must satisfy the following symmetry 
condition 

(30) D(i, j ,  k)  = D*(j ,  i ,  -k) 
in order to get the true minimum of equation (13). Equation (29) is .an analogue of 
the Schrodinger equation (5) for the Kohn-Sham wave function $ri(r). In deriving 
equation (29), we have ignored the derivative of w ~ ( T )  respect to &(T) for the fixed-occ 
method. Thus for the fixed-occ method, strictly -speaking, @; (T) is not the exact minimum 
solution of E,,, of equation (13) on the manifold of equation (10). In this case, @i(r) should 
be considered as the solution of equation (29) while satisfying equation (10). Equations (29) 
and (10) are the equations we will use to obtain +;(T). 

Solving for 4 j ( ~ )  from equation (29) can be done using the conjugate gradient method. 
The details of using the conjugate gradient method in solving the Schrijdinger equation can 
be found in [22]. (Instead Of performing several conjugate gradient steps for each orbital 
&(T) separately, in the  current method we need to update all the orbitals (&(T)} at the same 
time within each conjugate gradient step). Here the only difference from the conventional 
conjugate gradient method is that at each conjugate gradient step, instead of imposing 
the orthonormal condition of equation (4) we will impose the orthonormal condition of 
equation (10). We will discuss this in more detail. 

Suppose we have a set of wavefunctions {pi(r)}, and we want to make them orthogonal 
to (&(T)} as in equation (IO). (The formalism is very similar for other situations, e.g., to 
make a non-orthononnal set of ($;((T)} satisfy equation (lo).) We can achieve this by 
subtracting ( w ~ ( T ) & ( T ) }  components from {pi(r)}: 

and requiring that the resulting ( p i ( r ) ]  satisfy 

~;(T)*@~(T)w~(T) d37 = 0. (32) 

On substituting equation (31) into equation (32), we have the following linear equation for 
a symmetric (satisfying equation (30)) D'(i, j ,  k): 

s 
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C(i, j ,  k) = q%(r)&,!(r)zu-k(r) d3r (35) s 
The k in C(i ,  j ,  k) is within domain 522, which is defined as 

and 

ix E -2(mx - I), . . . ,2(m, - 1) 
i ,  E -2(m, - I), . . . , Z(m, - 1) 
i, E -2(m, - l), . . . ,2(m, - 1). (36) 

Thus, it is twice the size of i2 in each of the x ,  y .  z directions. This is why C(i, j ,  k) 
(equation (35), in domain Q2) does not equal &jSk,o (equation (lo), in domain Q), because 
k could be outside the region of a. 

Now, we will discuss how to calculate B(i ,  j ,  k) and C(i, j ,  k) and how to solve for 
D'(i, j, k) from equation (33). C(i, j, k) and B(i, j ,  k) both have the following form: 

C'(i, j ,  k) = fi.j(r)wk(r)d3r (37) s 
The direct calculation of equation (37) could lead to a N2 scaling. This is because there 
are nz (i, j )  pair, 43m k-points in i22, and each integration of Jd3r  takes Ngrid = aN 
operations. Thus the total number of operations for equation (37) is 43n2mN,,id = 1x4~nN~.  
This is unacceptable for our linear scaling scheme. However, WI;(T)  is defined as 
equation (11) for the fixed-vol method, and equation (18) for the fixed-occ method. Let us 
first discuss the fixed-vol method. Substituting equation (11) into equation (37), we find 
that the transformation from r-space into k-space is a Fourier transformation; thus, the fast 
Fourier transform (FFT) technique can be used. As a result, the total number of operations 
can be reduced to an2N 10g,(4~m), which is roughly linear in N. After D'(i, j ,  k) is 
obtained, the CkGn D'(i, j, k)wk(r) in equation (31) can be carried out in a similar way 
using FFT. For the fixed-occ method, wk(r) is defined in equation (18). To use the same 
FFT technique, we need to interpolate q5i (r)  on the uniform r-grid to @&(T)) on a uniform 
p-grid (also called a variable p-grid). Also note that 

After these steps, the FFT can be used on the variable p-grid. The operation for the 
interpolation is proportional to 

After B ( i ,  j ,  k) and C(i, j ,  k) are obtained, we need to solve for D'(i, j ,  k) from 
equation (33). Equation (33) is a linear equation with dimension z3mn2 x Z3mn2. Solving 
it directly using a standard numerical routine is costly and leads to high order scaling in 
N. However, equation (33) is a sparie linear equation. We have not found a direct method 
which can utilize its sparseness yet. So, here, we use an iterative method. It is easy to 
show that C(i, j ,  k) defines a Hermitian and positive definite matrix in equation (33). As 
a result, the conjugate gradient method is a proper iterative method for solving the linear 
equation. The main operation in the conjugate gradient method for solving equation (33) 
is carrying out the operation of the left-hand side of equation (33). Each &En is a 
convolution, and thus can be carried out in 43mIog,(43m) operations using a standard 
numerical routine. Thus the whole operation count of the left-hand side of equation (33) is 

and thus has a linear-in4 scaling. 
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43mn3 l0g,(4~m) = 43nZN 111(4~m) which is roughly linear in N. This conjugate gradient 
iteration for D’(i, j ,  k) is nested inside the outer iteration for (&(T)}.  We found that- 
using - 30 iterations to solve for D’(L j ,  k) for each outer iteration of (&(T)} works well. 
In plane-wave calculations for large Si systems, we found that the time spent on solving 
D’(i, j ,  k) using this method, is about half of the total computational time. 

Finally, let us mention that, for the fixed-vol method, after equation (29) is solved, 
H,,j(r) of equation (24) can be expressed as 

H i , j ( R )  = B‘(j, i, I c ) ~ ’ ” ~  (38) 
kER 

where 

B’(i, J ,  k) = / UJ-k(T)[’$(T)(fi@j(T)) + @ j ( ~ ) ( @ h ( ~ ) ) * l d ~ r .  (39) 

This B’(i, j ,  k) is calculated in the conjugate gradient steps of q 4 { ( ~ ) ,  so it is readily available. 
Thus it is fast and straightforward to calculate 

3. Applications - . 

We now apply the method discussed in the previous section to some testing systems. To 
simplify @e matter, we will treat the system nonselfconsistently. That means that we will 
use a fixed potential V ( r )  in equations (5) and (29). For selfconsistent calculations, the 
density errors will only be reduced compared to the current nonselfconsistent results [SI. 
This is because the Coulomb interaction will ensure a rough local charge neutrality, which 
will prevent large density errors. The numerical iteration is also stable for selfconsistent 
calculations [SI. The test for the current approach is to compare the results of equation (29) 
with the result of equation (5). which will be called ‘exact’ for the current purpose. The 
main quantities to be compared are the charge density, the kinetic energy and the potential 
energy, which are used in total ‘energy calculations. 

We will first test a one-dimensional system. Although the above formalism is for three 
dimensions, it is sttaightfonvard to change it to one suitable for one dimension. The system 
we test is a one-dimensional disorder system consisting of many potential wells, with large 
fluctuations in both well depth and position. There is also an area of vacuum, so the system 
is highly nonuniform. The potential of this system is shown in figure I(a). There are 16 
wells in the system. With each well occupied by two elechons, there are 32 electrons (16 
orbitals) in the system. Despite the randomness, there is a band gap above the 16 occupied 
states. The system is first calculated using the full KohnSham equation (5). 

In the fixed-occ method, the 16 orbitals have been reduced to 8 orbitals (i.e. m = 2, 
n = 8). The calculation for the variable grid p ( x )  in this one-dimensional system is very 
simple; it is 

for many values of R. 

(40) 
L *  

= e 1 PQ) dy 

where L is the length of the system and Q is the total charge. The computations are carried 
out using a plane-wave basis and the conjugate gradient method as described in section 2.3. 
The charge density results of this fixed-occ method are shown in figure l(b) as dots, while 
fie result_ of equation (5) is shown as the full curve. The difference between these two 
charge densities is very small. More quantitatively, this difference is calculated as 

AP = - ‘ S  IPexocr(T) - Pcpprox(r)l d 3 ~ .  (41) Q 
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This difference is 2.6% and is reported in table 1. Also reported in table 1 is the potential, 
kinetic and total energies of the exact results and the current results. The difference between 
the fixed-occ method and the exact method is about 1% for these energies. 

Table 1. TOW, potential and kinetic energies and the charge density errors ofthe one-dimensional 
disordered system. The energies are in atomic units. 

Methods E m  Ev Ek AP 

Exact (equation ( 5 ) )  -4.939 -6.355 1.416 - 
Fixed-occ -4.934 -6.334 1.400 2.6% 
Fixed-vol -1.889 -6.307 1.418 3.0% 

In the fixed-vol method, 13 orbitals (n = 13) are calculated using m = 2. (Note: should 
the system be larger, this number of 13 would not change.) The fictitious temperature l/@, 
the positions of R and the size of the paaition function f (r - R) in equations (26) and 
(28) do not affect the result in any significant way. The charge density of this method is 
shown in figure I(c) and the potential, kinetic and total energies are listed in table 1. The 
charge density has an error of 3.0% and the energies have a typical error of 1%. 

In summary, both the fixed-occ and fixed-vol method work well for this one-dimensional 
system despite the fact that it is highly nonuniform. 

Next, we apply our methods to a real three-dimensional system. The system we choose 
is Si in a diamond structure with &-atoms in a supercell. The atoms are randomly moved 
from their ideal diamond structure positions by - 15% of the Si-Si bond length. Thus it 
is a case where a large supercell calculation is needed. To get the total potential V(r ) ,  
we first performed a selfconsistent calculation. A local pseudopotential is used for the 
Si atom, although there should be no difficulty in using nonlocal pseudopotentials in the 
current methods. Despite the large distortion of the diamond structure, the system still has 
a smaIl band gap. After V(r )  is obtained, it is fixed in the following calculations. A 
relatively gross real-space grid of 24 x 24 x 24 is used in a plane-wavebasis calculation. 
The plane-wave-basis energy cut-off is 8 Ryd. This is relatively small; thus the result is 
not fully converged with respect to the plane-wave basis. However, this should not affect 
our comparison between different methods, because they all use the same energy cut-off 
and real-space grids. First, a full wavefunction calculation using equation (5) and the fixed 
potential V ( r )  is carried out. There are 128 occupied eigenstates. The charge density is 
shown in figure Z(a) and energies in table 2. 

Table 2. Total, potential and unetic energies and the charge density errors of the 64-Si-atom 
system. The potential energy is the nonselfconsistent potential energy, which is the product of 
the charge density and the potential V(r). The energies are the energy per atom in eV. 

Methods E m  Eu Ek AP 

Exact (equation (5)) -33.08 -56.26 23.18 - 
Fixed-occ -33.77 -55.72 21.95 6.9% 
Fixed-vol -32.79 -56.09 23.31 4.5% 

Now, in the reduced orbital method, we used m, = m!, = mL = 2. Thus in the fixed- 
occ method, the 128 orbitals have been reduced to 16 orbitals (n = 16). In the fixed-vol 
method, we used n = 19. To generate the variable grid p(r )  for the fixed-occ method, we 
have used a pave(r) instead of p ( r )  in equation (17). Here, paue(r)  is a locally averaged 
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Figure 1. The potential and charge densities of lhe one-dimensional disordered system: (a) 
the potential, with a vacuum space at the right-hand side; (b) c h w e  density comparison: the 
fixed-acc method result (dots) and the exact result (equation (5)) (solid line): (c) charge density 
comparison: the fixed-vol method result (dots) and the exact result (equation (5)) (solid line). 

result of p ( r ) .  As long as this local average is performed in an area smaller than the area 
of 

the use of pauc(r) in equation (17) should not affect our final results very much. A spring- 
mesh model [8] is used to calculate p(r )  based on poue(r), although similar results can be 
obtained using equations (19H23). The algorithm of using interpolation (for the fixed-occ 
method) and FFT to calculate C(i ,  j ,  8)  and B(i,  j ,  k) in equations (31), (34) and (35) is 
implemented in our computer code. as is the use of conjugate gradient and convolution 
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Figure 2. The charge density comparison between different methods for the 64-Si-atom system: 
(a) the exact method (equation (5)); @) the fixed-occ method: (c) the fixed-vol method. All 
contour plots are plotted using the same contour interval of 0.01 au and only one fourth of the 
[I101 a s s  section of the whole system is shown. 

techniques in solving the linear equation (33). Thus the whole computational time scales 
linearly with the size of the system. Again, in the fixed-vol method, the fictitious temperature 
l/pa the positions of R and the size of the partition function f ( r  - R) in equations (26) 
and (28) have very small effects on the final results. Finally, the charge densities of the 
fixed-occ and fixed-vol methods are shown in figures 2(b) and 2(c), respectively. The charge 
density errors calculated according to equation (41) are 6.9% and 4.5% for the fixed-occ 
and fixed-vol methods, respectively, and are listed in table 2. Also listed in table 2 are their 
potential, kinetic and total energies. For the fixed-occ method, the largest energy error is in 
the kinetic energy which is about 5%. For the fixed-vol method, the energy errors are all 
less than 1%. Overall, the fixed-vol method has better results than the fixed-occ method, in 
this three-dimensional system. Note that, in the one -dimensional case, the fixed-occ method 
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has similar quality (or even slightly better) than the fixed-vol method; the inferiority of the 
fixed-occ method in OUT three-dimensional system might have something to do with the 
gross real-space grid we used. Because the numerical grid interval is large, the Jacobian in 
equation (17) is not well defined on the numerical grid, which can inhoduce an error in the 
variable grid p ( ~ ) .  Also, due to the interpolation scheme we used in the fixed-occ method, 
there are more chances for numerical inaccuracy in the fixed-occ method. 

In summary, the reduced orbital methods work well for the three-dimensional system. 
With the current implementation of the methods, the computational time scales linearly with 
the size of the system. 

4. Discussion 

In the abstract, we mentioned thatthe reduced orbital method reduces to ak-point integration 
method in the cases of crystals. If the m small systems (in the discussion of section 2.1) 
cut from a large system (supercell) are identical, then the n f-point Bloch wavefunctions 
of the small systems satisfy the orthonormal condition equation (10) and the wavefunction 
equation (29). This is still true when the variable grid p is used for wk(r) .  Because the 
? point of the small system could correspond to a few k-points in the Brillouin zone of 
the primary cell (depending on how large the small system (n) is), the current method is 
equivalent to using these few k-points to describe the large supercell system (which could be 
the whole crystal). For our example of the &-atom Si supercell, if there is no distortion of 
the diamond structure, the current reduced orbital method is the same as using one k-point 
of the 8-atom Si cubic cell to describe the 64-atom system. (By definition, using the f 
point of the @-atom supercell to describe h is  64-atom system is ‘exact’.) Numerically, the 
density error of using one k-point of the 8-atom Si cubic celf to describe the Si crystal is 
found to be 4.5%, which is comparable to OUT charge density errors. In fact, this can be used 
as a way to estimate how many reduced orbitals (n)  is needed to achieve an given accuracy. 
For a nonperiodic system, the reduced orbital method can be regarded as an extension of 
the k-point integration method. This is why at the end of section 1 we said that the current 
method is like a ‘divide and conquer’ method in k-space. 

In the fixed-occ method, in order to use FFT to calculate C(i, j ,  k) and B(i,  j ,  k) 
in Eqs (34) and (35), interpolation is used between the r-space grid and p-space grid. 
This interpolation can introduce numerical errors, especidly for gross grids. One way to 
implement the fixed-occ method is to calculate everything on the variable p grid. Then 
the basis function is not the conventional plane wave, but e’h’p(r). Application of the V,” 
operator in equation (29) can be carried out in p-space involving a transformation matrix 
for T + p ( ~ ) .  This approach is called the adaptive coordinate approach [23], and has 
been tested for various systems I241 to reduce the number of plane-wave functions. In this 
approach, the FFI can be directly used without interpolation in the calculation of C(i ,  j ,  k) 
and B(i, j ,  k). 

In the fixed-vol method, the final step is very much like the method of Yang [9]. 
However, instead of making calculations for each small system with different bases, the 
current method first calculates {@i(r)} and uses this set as the basis for all the small systems. 
Because the calculation of Hf.j(R) in equations (24) and (38) is.easy, we can calculate for 
many R-points. Also, as the dimension n of Hj, j (R)  is only slightly larger than the number 
of occupied states in a small system, the diagonalization of Hj,,(R) is very fast. The current 
weight function defined by equation (8). W(T - R) used in equation (24) has small negative 
values in some regions. It is intemting to see whether using an always-positive weight 
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function, like 
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in equation (24) will make any difference. 
One ‘bottleneck‘ of the current scheme is the solving of the linear equation (33). Using 

the current iterative method, it takes half the time of the whole calculation. However, if just 
a moderately accurate calculation is performed with a small number n of reduced orbitals, 
the orthonormal condition of equation (10) need not be satisfied exactly. In that case, we 
can minimize the following function: 

to calculate q5i(r) without imposing any additional constraints on &(r). Here, E,,, is 
defined in equation (13) and y is an adjustable parameter. Again, the conjugate gradient 
method can be used to miminize F .  For large y ,  the second term of equation (42) at 
the minimum will be small, q d  equation (10) will be satisfied accurately. But for large 
y ,  the convergence of the conjugate gradient iteration used to minimize F is slow due to 
the stiffness of the second term in equation (42). However, if equation ‘(10) need only be 
satisfied approximately, we can use a smaller y ,  and then the minimum of F can be found 
fairly easily. As a matter of fact, we found that, if the number n of reduced orbitals is 
small, a smaller y can lead to a better charge density than an infinitely large y .  Using this 
approach, the problem of solving the linear equation (33) is avoided. Especially interesting 
is the use of this approach in the fixed-vol method; because in this method {$i(r)] serves 
only as a basis in the final diagonalization step (equation (?A)), the accuracy (or, say, the 
convergence) of the q5i(r), and whether they satisfy the exact orthogonalization conditions, 
would not be as critical as in the fixed-wc method (e.g., nonorthogonal basis diagonalization 
can be applied to Hi , j (R)  of equation (24)). 

The advantage of the current method compared to the localized orbital method is that 
the plane-wave basis and the fast Fourier transformation technique can be readily used. 
Being an extension of the k-point integration method, the current method might work best 
for roughly uniform systems, like alloys or liquids. It remains to be seen how well the 
current method works for three-dimensional systems with surfaces and vacuums, where a 
dramatic variable-grid-p(r) is needed in the fixed-occ method (although it works well for 
one-dimensional systems, as demonstrated in this work). 

There is a problem in the localized orbital method analogous to our problems of 
equations (15) and (16) (with wk(r)  defined in equation (11)) which leads us to introduce 
the variable grid p ( ~ )  in the fixed-occ method. That is, we cannot put the allowed area of 
the localized orbitals uniformly in real space, disregarding *e ionic positions in that region. 
Doing so will lead to a ‘uniform’ charge density which satisfies conditions like equation (15) 
(with wk(r) defined in equation (11)). Thus, the positions of the localized orbitals should 
accompany the positions of the ions, or let them float in a dynamical way. This is like 
our treatment of the variable grid p(r) .  In fact, we can also determine p ( ~ )  from ionic 
positions (instead of selfconsistently (dynamically) from p ( r ) ) ,  by assuming that the p ( r )  
and ionic charge follow each other (neutralized) in the scale of  the small systems. This 
avoids the updating of p(r)  for each iteration step of &(T)  and makes equation (29) the 
true variational equation, and q+,(r) the true variational solution for E,,, in equation (13). 

The basic idea of the current work is that it is not necessary to use thousands of 
wholly spaced wavefunctions to describe the electronic structure of a very large system. 
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Thus, either we cut the space of each wavefunction and localize each wavefunction in a 
fixed finite region (the localized orbital method), or we cut the number of wholly spaced 
wavefunctions, using only a fixed number of them (the reduced orbital method). It turns out 
that we can work out the formulas for both approaches. It is the object of further studies to 
find the relationship between these two methods and to test the convergence of the current 
method with respect to the number of reduced orbitals n. It is of interest to see whether 
similar techniques, such as the unconstrained minimization approach reported in [13], could 
be used here. If this is possible, then the exact solution of linear equation (33) may become 
unnecessary. In our current procedure, for each conjugate gradient iteration on $(, we have - 30 conjugate gradient iterations on equation (33). Can we reduce this number and still 
get a converged result? Is this related to an unconstrained minimization scheme? We also 
need to study more carefully the speed of conjugate gradient convergence of  &(T) in this 
approach. 
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